JAVIER Fochesatto

Atmospheric Science
RESEARCH: We are interested in surface-atmosphere interactions in complex heterogeneous surfaces and canopies characterizing high latitude environments. We develop experiments to improve understanding of land-atmosphere coupling processes from micro-meteorological to atmospheric boundary layer scales. We focus on determination of surface fluxes of heat, moisture and carbon as tracers of surface-atmosphere interaction in Arctic Tundra, Alaskan Boreal Forest and high latitude agro-ecosystems. We use land-surface and atmospheric models as well as remote sensing platforms to improve our understanding of surface fluxes aggregation to the mesoscale flow as function of the atmospheric boundary layer turbulence and dynamic, surface characteristics, vegetation complexities, etc. Our research has intersections with Climate Change, Hydrometeorology, Eco-Hydrology, Ecosystems dynamics, Natural Resources and Agriculture. CURRENT TEACHING: Micrometeorology (ATM-673), Atmospheric Boundary Layer Physics (ATM-697), Cloud and Aerosol Physics (ATM-415/615) TEACHING INTERESTS: Turbulence, Environmental Physics, Atmospheric Physics, Atmospheric Radiation, Analysis of Signal and System Applied to Meteorology, Climatology and Ecosystems research.
Current Positions: 
Associate Professor of Atmospheric Sciences, Deputy Group Leader Geophysical Institute Atmospheric Science Research Group
Present Research Interests: 
  • Land-Surface interaction and Atmospheric Coupling across Spatial and Time Scales
  • Atmospheric Boundary Layer Turbulence, Composition, Dynamics and Meteorology
  • Micrometeorology. Eddy-Covariance, Laser Scintillometry and Lidar Spectroscopy
  • Biogeochemical Cycles in High Latitudes
  • Polar Meteorology
Selected Pubs: 
  • 1. Ruairuen W., G. J. Fochesatto, E. B. Sparrow, W. Schnable, M. Zhang and Y. Kim “Evapotranspiration Cycles in a High Latitude Agroecosystem: Potential Warming Role”. Plos One DOI:10.1371/journal.pone.0137209. 30 pages.
  • 2. Fochesatto G. J., 2015: “Methodology for Determining Multilayered Temperature Inversions”. Atmos. Meas. Tech., 8, 2051-2060, doi:10.5194/amt-8-2051-2015.
  • 3. Hullavarad NV, Hullavarad SS, Fochesatto GJ, 2015. “Elemental and Microscopic Analysis of Naturally Occurring C–O–Si Hetero-Fullerene-Like Structures”. Journal of Nanoscience and Nanotechnology, 15 (3), 2379-2383.
  • 4. Starkenburg D. P., Fochesatto G. J., Cristóbal J., Prakash A., Gens R., Alfieri J.G., Nagano H., Harazono Y., Iwata H. and Kane D.L. 2015: "Temperature regimes and turbulent heat fluxes across a heterogeneous canopy in an Alaskan boreal forest”. J. Geo
  • 5. Fochesatto, G. J.: Methodology for determining multilayered temperature inversions, Atmos. Meas. Tech. Discuss., 7, 10559-10583, doi:10.5194/amtd-7-10559-2014, 2014.
  • 6. Gruber, M. A., Fochesatto, G. J., Hartogensis, O. K., and Lysy, M. 2014: “Functional derivatives applied to error propagation of uncertainties in topography to large-aperture scintillometer-derived heat fluxes”. Atmos. Meas. Tech., 7, 2361-2371, doi:10
  • 7. Malingowski J., D. Atkinson, G. J. Fochesatto, J. Cherry and E. Stevens. 2014: “An Observational Study of Radiation Temperature Inversions in Fairbanks, Alaska”. Polar Science, 8, 1, 24–39.
  • 8. Gruber M. A, G. J. Fochesatto and O. Hartogensis. 2014: “Sensitivity of Displaced-Beam Scintillometer Measurements of Area-Average Heat Fluxes to Uncertainties in Topographic Heights”. arXiv Atmospheric and Oceanic Physics, 1405.2309.
  • 9. Gruber M. A, G. J. Fochesatto and O. Hartogensis. 2014: “Sensitivity of Large-Aperture Scintillometer Measurements of Area-Average Heat Fluxes to Uncertainties in Topographic Heights over Variable Terrain”. Atmos. Meas. Tech. Discuss., 7, 33-68, 2014.
  • 10. Fochesatto G. J., J. A. Mayfield, M. A. Gruber, D. Starkenburg and J. Conner. 2013: “Occurrence of Shallow Cold Flows in the Winter Atmospheric Boundary Layer of Interior of Alaska”. Meteorol. Atmos. Phys. DOI 10.1007/s00703-013-0274-4
  • 11. Starkenburg, D., G. J. Fochesatto, A. Prakash, J. Cristóbal, R. Gens, and D. L. Kane. 2013: “The role of coherent flow structures in the sensible heat fluxes of an Alaskan boreal forest”, J. Geophys. Res. Atmos., 118, 8140–8155, doi:10.1002/jgrd.50625
  • 12. Gruber M. A. and G. J. Fochesatto. 2013: “A New Sensitivity Analysis and Solution Method for Scintillometer Measurements of Area-Average Turbulent Fluxes” Boundary-Layer Meteorology, 149:65–83 DOI 10.1007/s10546-013-9835-9
  • 13. Mayfield J. A. and G. J. Fochesatto. 2013: “The Layered Structure of the winter Atmospheric Boundary Layer in the Interior of Alaska”. J. Appl. Met. Climatol., 52, 953-973.
  • 14. Walsh C., G. J. Fochesatto and H. A. Toniolo. 2012: “The importance of flow and turbulence characteristics for hydrokinetic energy development on the Tanana River at Nenana, Alaska”. Journal of Power and Energy, 226, 2, 283-299.
  • 15. Allen, G., Coe, H., Clarke, A., Bretherton, C., Wood, R., Abel, S. J., Barrett, P., Brown, P., George, R., Freitag, S., McNaughton, C., Howell, S., Shank, L., Kapustin, V., Brekhovskikh, V., Kleinman, L., Lee, Y.-N., Springston, S., Toniazzo, T.,
  • 16. Wood R., C. S. Bretherton, C. R. Mechoso, R. A. Weller, B. Huebert, F. Straneo, B. A. Albrecht, H. Coe, G. Allen, G. Vaughan, P. Daum, C. Fairall, D. Chand, L. Gallardo Klenner, R. Garreaud, C. Grados Quispe, D. S. Covert, T. S. Bates, R. Krejci,
  • 17. Huff D.M., P.L. Joyce, G. J. Fochesatto and W.R. Simpson. 2011: “Deposition of dinitrogen pentoxide, N2O5, to the snowpack at high latitudes”. Atmos. Chem. Phys., 11, 4929-4938, 2011